Difference between revisions of "Category:Astronomy"

From Christoph's Personal Wiki
Jump to: navigation, search
(Programs, algorithms, and code)
Line 9: Line 9:
 
*[http://search.cpan.org/~rkhill/Astro-Sunrise-0.91/Sunrise.pm Astro::Sunrise]
 
*[http://search.cpan.org/~rkhill/Astro-Sunrise-0.91/Sunrise.pm Astro::Sunrise]
 
*[http://search.cpan.org/~brett/Astro-MoonPhase-0.60/MoonPhase.pm Astro::MoonPhase]
 
*[http://search.cpan.org/~brett/Astro-MoonPhase-0.60/MoonPhase.pm Astro::MoonPhase]
 +
*[http://search.cpan.org/~cphil/Astro-0.69/Astro/Coord.pm Astro::Coord]
 +
*[http://search.cpan.org/~bluefeet/Geo-Distance-0.11/Distance.pm Geo::Distance]
 +
 +
===Equations===
 +
====Geo::Distance====
 +
''Note: The <code>d</code> at the end of each of the following equations means "distance".''
 +
 +
*hsin: Haversine Formula
 +
  dlon = lon2 - lon1
 +
  dlat = lat2 - lat1
 +
  a = (sin(dlat/2))^2 + cos(lat1) * cos(lat2) * (sin(dlon/2))^2
 +
  c = 2 * atan2( sqrt(a), sqrt(1-a) )
 +
  d = R * c
 +
''Note: The hsin formula has improved accuracy over the cos formula.''
 +
 +
*polar: Polar Coordinate Flat-Earth Formula
 +
  a = pi/2 - lat1
 +
  b = pi/2 - lat2
 +
  c = sqrt( a^2 + b^2 - 2 * a * b * cos(lon2 - lon1) )
 +
  d = R * c
 +
 +
*cos: Law of Cosines for Spherical Trigonometry
 +
  a = sin(lat1) * sin(lat2)
 +
  b = cos(lat1) * cos(lat2) * cos(lon2 - lon1)
 +
  c = arccos(a + b)
 +
  d = R * c
 +
''Note: Although this formula is mathematically exact, it is unreliable for small distances because the inverse cosine is ill-conditioned.''
 +
 +
*gcd: Great Circle Distance.
 +
  c = 2 * asin( sqrt(
 +
    ( sin(( lat1 - lat2 )/2) )^2 +
 +
    cos( lat1 ) * cos( lat2 ) *
 +
    ( sin(( lon1 - lon2 )/2) )^2
 +
  ) )
 +
 +
*mt: Math::Trig great_circle_distance
 +
  lat0 = 90 degrees - phi0
 +
  lat1 = 90 degrees - phi1
 +
  d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) + sin(lat0) * sin(lat1))
  
 
==External links==
 
==External links==

Revision as of 07:51, 11 July 2007

This article is curently a "stub". This means it is an incomplete article needing further elaboration.

I always welcome suggestions, comments, and criticism. If you have something to contribute to this site, please follow this link: Contributing Information. Thank you!

Books

  • Practical Astronomy With Your Calculator by Peter Duffett-Smith, Third Edition, Cambridge University Press, 1988. ISBN 0-5213-5699-7
  • Astronomical Formulae for Calculators by Jean Meeus, Third Edition, Willmann-Bell, 1985. ISBN 0-9433-9609-3
  • Planetary Programs and Tables from -4000 to +2800 by Pierre Bretagnon and Jean-Louis Simon, Willmann-Bell, 1986.
  • Celestial BASIC: Astronomy on Your Computer by Eric Burgess, Revised Edition, Sybex, 1985. ISBN 0-8958-8087-3

Programs, algorithms, and code

Equations

Geo::Distance

Note: The d at the end of each of the following equations means "distance".

  • hsin: Haversine Formula
 dlon = lon2 - lon1
 dlat = lat2 - lat1
 a = (sin(dlat/2))^2 + cos(lat1) * cos(lat2) * (sin(dlon/2))^2
 c = 2 * atan2( sqrt(a), sqrt(1-a) )
 d = R * c

Note: The hsin formula has improved accuracy over the cos formula.

  • polar: Polar Coordinate Flat-Earth Formula
 a = pi/2 - lat1
 b = pi/2 - lat2
 c = sqrt( a^2 + b^2 - 2 * a * b * cos(lon2 - lon1) )
 d = R * c 
  • cos: Law of Cosines for Spherical Trigonometry
 a = sin(lat1) * sin(lat2)
 b = cos(lat1) * cos(lat2) * cos(lon2 - lon1)
 c = arccos(a + b)
 d = R * c

Note: Although this formula is mathematically exact, it is unreliable for small distances because the inverse cosine is ill-conditioned.

  • gcd: Great Circle Distance.
 c = 2 * asin( sqrt(
   ( sin(( lat1 - lat2 )/2) )^2 + 
   cos( lat1 ) * cos( lat2 ) * 
   ( sin(( lon1 - lon2 )/2) )^2
 ) )
  • mt: Math::Trig great_circle_distance
 lat0 = 90 degrees - phi0
 lat1 = 90 degrees - phi1
 d = R * arccos(cos(lat0) * cos(lat1) * cos(lon1 - lon01) + sin(lat0) * sin(lat1))

External links

This category currently contains no pages or media.