Difference between revisions of "Misc science info"
From Christoph's Personal Wiki
(New page: This article will be about miscellaneous science information that I have not organized just yet. ==The Six Great Stages of Evolution on Earth== #From the origin of life to the ”Last Com...) |
|||
| Line 8: | Line 8: | ||
#Invasion of the land | #Invasion of the land | ||
#Appearance of intelligence and technology. | #Appearance of intelligence and technology. | ||
| + | |||
| + | ==Back of the Envelope Calculations (BotEC)== | ||
| + | Students in CS&E 141 should use the following format for writing up "Back of the Envelope Calculations" (abbreviated "BotEC"). | ||
| + | |||
| + | BotEC's have: | ||
| + | It is a good practice to use the following steps when performing BotEC's: | ||
| + | |||
| + | ;Formula(s) : formula(s) that provide a roadmap to the upcoming calculations. The formula should include names for any quantity that will be estimated, and should give units of measurement (in parentheses). Conversion factors (e.g. bits/Byte) can appear without a name. | ||
| + | ;Estimates : Estimates of the quantities appearing in the formula. There should be a very brief justification of the estimate if it is not obvious. You should use "wiggley equal signs" to indicate approximations. | ||
| + | ;Calculation(s): Calculations in which the estimates and known facts are substituted into the formula. | ||
| + | |||
| + | ===Example #1: Calculate the bandwidth needed for full screen video=== | ||
| + | |||
| + | ;Formula | ||
| + | :Bandwidth (Bytes/sec) = ScreenSize(dots/image) x RefreshRate (images/sec) x Information (Bytes/dot) | ||
| + | |||
| + | ;Estimates | ||
| + | :ScreenSize ~= 1,000,000 dots/image (estimating a 1000x1000 screen) | ||
| + | :RefreshRate ~= 30 images/second (so eye won't see flicker) | ||
| + | :Information = 3 Bytes/dot (one Byte each for R, G, B) | ||
| + | |||
| + | ;Calculation | ||
| + | :Bandwidth ~= 10^6 dots/image x 30 images/sec x 3 Bytes/dot = 90x10^6 Bytes/sec ~= '''100 MByte/sec''' | ||
| + | |||
| + | ===Example #2: AU / ly=== | ||
| + | *Calculate the number of astronomical units (AU) in a light-year (ly) | ||
| + | |||
| + | Speed of light ~= 300,000 km/sec | ||
| + | Seconds in a year = 60 X 60 X 24 X 365.25 = 31,557,600 | ||
| + | Distance traveled in a year = speed in km/sec X seconds | ||
| + | = 9,467,280,000,000 km = 1 Light Year | ||
| + | |||
| + | 1 AU = 149,598,500 km | ||
| + | |||
| + | Number of AU in 1 ly = | ||
| + | (9,467,280,000,000 km) / (149,598,500 km) | ||
| + | = 9,467,280,000 / 149,598.5 = | ||
| + | = 946728 / 15 | ||
| + | = 63115.2 AU/ly | ||
| + | --------------------------------------------------------- | ||
| + | c = speed of light = 2.99792458E+8 m/s | ||
| + | y = seconds per (tropical) year = 31556926 | ||
| + | cy = one lightyear in meters = 9.460528412641E+15 meters | ||
| + | au = one astronomical unit = 1.49597870691E+11 meters | ||
| + | # There are cy/au astronomical units in one lightyear. | ||
| + | cy/au = 63239.7 | ||
| + | # If you use the Julian year instead of the tropical year | ||
| + | # to calculate the number of meters in a light-year, then | ||
| + | y = 31557600 | ||
| + | cy = 9.46073047258E+15 meters | ||
| + | cy/au = 63241.1 | ||
| + | --------------------------------------------------------- | ||
| + | 1 light-year = 63.241 × 10^3 AU = 63,241 AU | ||
| + | 1 AU = 149,597,870,700 metres | ||
| + | = 149.60 x 10^6 km | ||
| + | = 149.60 x 10^9 m | ||
| + | 1 AU ~= 499 seconds | ||
| + | ~= 8.32 minutes for light to travel this distance | ||
| + | 1 light-year = 9460730472580800 metres (exactly) | ||
| + | 1 year = 365.25 days (exactly) | ||
| + | 1 year = 86400 SI seconds, totalling 31,557,600 seconds) | ||
| + | speed of light = 299792458 m/s | ||
| + | --------------------------------------------------------- | ||
| + | speed of light in AU/hr: | ||
| + | 2.998 x 10^8m/s = (2.998x10^8 m/s)/(1000 m/km) | ||
| + | = 2.998 x 10^5 km/s = (2.998x10^5 km/s)*(3600 s/h) | ||
| + | = 10792.8 x 10^5 km/h = 1.07928 x 10^9 km/h | ||
| + | = (1.07928 x10^9 km/h)(1/(1.50 x 10^8 km/Au) | ||
| + | = 0.71952 x10^1 Au/ h= 7.1952 Au/h, | ||
| + | ~= 7.20 AU/h (at 3 significant figures) | ||
| + | # the accuracy of the least accurate data "1.50 x10^8 km/Au" | ||
==External links== | ==External links== | ||
Revision as of 01:26, 27 July 2012
This article will be about miscellaneous science information that I have not organized just yet.
Contents
The Six Great Stages of Evolution on Earth
- From the origin of life to the ”Last Common Ancestor"
- Prokaryote diversification
- Unicellular eukaryote diversification
- Multicellularity
- Invasion of the land
- Appearance of intelligence and technology.
Back of the Envelope Calculations (BotEC)
Students in CS&E 141 should use the following format for writing up "Back of the Envelope Calculations" (abbreviated "BotEC").
BotEC's have: It is a good practice to use the following steps when performing BotEC's:
- Formula(s)
- formula(s) that provide a roadmap to the upcoming calculations. The formula should include names for any quantity that will be estimated, and should give units of measurement (in parentheses). Conversion factors (e.g. bits/Byte) can appear without a name.
- Estimates
- Estimates of the quantities appearing in the formula. There should be a very brief justification of the estimate if it is not obvious. You should use "wiggley equal signs" to indicate approximations.
- Calculation(s)
- Calculations in which the estimates and known facts are substituted into the formula.
Example #1: Calculate the bandwidth needed for full screen video
- Formula
- Bandwidth (Bytes/sec) = ScreenSize(dots/image) x RefreshRate (images/sec) x Information (Bytes/dot)
- Estimates
- ScreenSize ~= 1,000,000 dots/image (estimating a 1000x1000 screen)
- RefreshRate ~= 30 images/second (so eye won't see flicker)
- Information = 3 Bytes/dot (one Byte each for R, G, B)
- Calculation
- Bandwidth ~= 10^6 dots/image x 30 images/sec x 3 Bytes/dot = 90x10^6 Bytes/sec ~= 100 MByte/sec
Example #2: AU / ly
- Calculate the number of astronomical units (AU) in a light-year (ly)
Speed of light ~= 300,000 km/sec
Seconds in a year = 60 X 60 X 24 X 365.25 = 31,557,600
Distance traveled in a year = speed in km/sec X seconds
= 9,467,280,000,000 km = 1 Light Year
1 AU = 149,598,500 km
Number of AU in 1 ly =
(9,467,280,000,000 km) / (149,598,500 km)
= 9,467,280,000 / 149,598.5 =
= 946728 / 15
= 63115.2 AU/ly
---------------------------------------------------------
c = speed of light = 2.99792458E+8 m/s
y = seconds per (tropical) year = 31556926
cy = one lightyear in meters = 9.460528412641E+15 meters
au = one astronomical unit = 1.49597870691E+11 meters
# There are cy/au astronomical units in one lightyear.
cy/au = 63239.7
# If you use the Julian year instead of the tropical year
# to calculate the number of meters in a light-year, then
y = 31557600
cy = 9.46073047258E+15 meters
cy/au = 63241.1
---------------------------------------------------------
1 light-year = 63.241 × 10^3 AU = 63,241 AU
1 AU = 149,597,870,700 metres
= 149.60 x 10^6 km
= 149.60 x 10^9 m
1 AU ~= 499 seconds
~= 8.32 minutes for light to travel this distance
1 light-year = 9460730472580800 metres (exactly)
1 year = 365.25 days (exactly)
1 year = 86400 SI seconds, totalling 31,557,600 seconds)
speed of light = 299792458 m/s
---------------------------------------------------------
speed of light in AU/hr:
2.998 x 10^8m/s = (2.998x10^8 m/s)/(1000 m/km)
= 2.998 x 10^5 km/s = (2.998x10^5 km/s)*(3600 s/h)
= 10792.8 x 10^5 km/h = 1.07928 x 10^9 km/h
= (1.07928 x10^9 km/h)(1/(1.50 x 10^8 km/Au)
= 0.71952 x10^1 Au/ h= 7.1952 Au/h,
~= 7.20 AU/h (at 3 significant figures)
# the accuracy of the least accurate data "1.50 x10^8 km/Au"