Difference between revisions of "Z-Hunt"

From Christoph's Personal Wiki
Jump to: navigation, search
Line 1: Line 1:
'''Z-Hunt''' (aka '''ZHunt''') is an algorithm for predicting the propensity of DNA to flip from the B-form to the [[Z-DNA|Z-form]]. The original algorithm was written by [[Dr. P. Shing Ho Laboratory|Dr. P. Shing Ho]] in 1986<ref name=Ho86>Ho PS, Ellison MJ, Quigley GJ, Rich A (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. ''EMBO J, 5(10):2737-2744''.</ref> and was later developed by Tracy Camp, [[Christoph Champ|P. Christoph Champ]], Sandor Maurice, and Jeffrey M. Vargason for genome-wide mapping of [[Z-DNA]] (with P. Shing Ho as the principal investigator)<ref>[[Christoph Champ|Champ PC]], Maurice S, Vargason JM, Camp T, Ho PS (2004). Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. ''Nucleic Acids Research, 32(22):6501-6510''.</ref>. Z-Hunt is available for use Online at [http://gac-web.cgrb.oregonstate.edu/zDNA/ ZHunt Online].
+
'''ZHUNT''' (aka '''Z-Hunt''' or '''ZHunt''') is an algorithm for predicting the propensity of DNA to flip from the B-form to the [[Z-DNA|Z-form]]. The original algorithm was written by [[Dr. P. Shing Ho Laboratory|Dr. P. Shing Ho]] in 1986<ref name=Ho86>Ho PS, Ellison MJ, Quigley GJ, Rich A (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. ''EMBO J, 5(10):2737-2744''.</ref> and was later developed by Tracy Camp, [[Christoph Champ|P. Christoph Champ]], Sandor Maurice, and Jeffrey M. Vargason for genome-wide mapping of [[Z-DNA]] (with P. Shing Ho as the principal investigator)<ref>[[Christoph Champ|Champ PC]], Maurice S, Vargason JM, Camp T, Ho PS (2004). Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. ''Nucleic Acids Research, 32(22):6501-6510''.</ref>. Z-Hunt is available for use Online at [http://gac-web.cgrb.oregonstate.edu/zDNA/ ZHunt Online].
  
 
==Z-score==
 
==Z-score==
Line 62: Line 62:
 
<small><references/></small>
 
<small><references/></small>
 
===Further reading===
 
===Further reading===
 +
*Ho PS (2008). "Thermogenomics: Thermodynamic-based approaches to genomic analyses of DNA structure". ''Methods, [Epub ahead of print]''. PMID: 18848994. {{doi|10.1016/j.ymeth.2008.09.007}}
 
*Ho PS (1994). The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. ''Proc Natl Acad Sci USA, 91(20):9549-9553''.
 
*Ho PS (1994). The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. ''Proc Natl Acad Sci USA, 91(20):9549-9553''.
 
*Schroth GP, Chou PJ, Ho PS (1992). Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. ''J Biol Chem, 267(17):11846-55''.
 
*Schroth GP, Chou PJ, Ho PS (1992). Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. ''J Biol Chem, 267(17):11846-55''.

Revision as of 06:18, 25 December 2008

ZHUNT (aka Z-Hunt or ZHunt) is an algorithm for predicting the propensity of DNA to flip from the B-form to the Z-form. The original algorithm was written by Dr. P. Shing Ho in 1986[1] and was later developed by Tracy Camp, P. Christoph Champ, Sandor Maurice, and Jeffrey M. Vargason for genome-wide mapping of Z-DNA (with P. Shing Ho as the principal investigator)[2]. Z-Hunt is available for use Online at ZHunt Online.

Z-score

Note: The following table is a list of test sequences with their corresponding conformational assignments and Z-scores. This "Z-score" should not be confused with the statistical "Standard score". Here, it describes the propensity of a given sequence to adopt the left-handed form of DNA; it is simply a probability score.

Sequence/conf. assignments  | Z-score
----------------------------|------------
CGCGCGCGCGCGCGCGCGCGCGCG    | 2 x 10e+11
ASASASASASASASASASASASAS    |
                            |
CGCGCGCGCGCG                | 4 x 10e+07
ASASASASASAS                |
                            |
CACACACACACACACACACACACA    | 2 x 10e+05
ASASASASASASASASASASASAS    |
                            |
CACACACACACA                | 2 x 10e+04
ASASASASASAS                |
                            |
CGCGCGCGCGCG GCGCGCGCGCGC   | 2 x 10e+08
ASASASASASAS SASASASASASA   |
                            |
CGCGCG GCGCGC CGCGCG GCGCGC | 7 x 10e+04
ASASAS SASASA ASASAS SASASA |
                            |
 *   *   *   *   *   *      |
CCCGCCCGCCCGCCCGCCCGCCCG    | 8 x 10e+04
ASASASASASASASASASASASAS    |
                            |
  *   *   *   *   *   *     |
CAGGCAGGCAGGCAGGCAGGCAGG    | 1 x 10e+03
ASASASASASASASASASASASAS    |
                            |
 * * * * * * * * * * * *    |
CCCCCCCCCCCCCCCCCCCCCCCC    | 52
ASASASASASASASASASASASAS    |
                            |
ATATATATATATATATATATATAT    | 38
SASASASASASASASASASASASA    |
                            |
AAAAAAAAAAAAAAAAAAAAAAAA    | 3 x 10e-07
ASASASASASASASASASASASAS    |
Various test sequences are shown with their corresponding Z-score as assigned by Z-hunt [version 1]. Z-scores are defined as the number of random base pairs that must be scanned, on average, to find a sequence with equal or better Z-forming capacity relative to the sequence in question. The conformation selected by Z-hunt for each nucleotide (A for anti and S for syn) are indicated below each sequence. Bases which deviate from perfect purine-pyrimidine alternation are designated by dots above that nucleotide. Discontinuities in the conformational phases produced by Z-Z junctions are represented by gaps separating the sequence.[1]

See also

References

  1. 1.0 1.1 Ho PS, Ellison MJ, Quigley GJ, Rich A (1986). A computer aided thermodynamic approach for predicting the formation of Z-DNA in naturally occurring sequences. EMBO J, 5(10):2737-2744.
  2. Champ PC, Maurice S, Vargason JM, Camp T, Ho PS (2004). Distributions of Z-DNA and nuclear factor I in human chromosome 22: a model for coupled transcriptional regulation. Nucleic Acids Research, 32(22):6501-6510.

Further reading

  • Ho PS (2008). "Thermogenomics: Thermodynamic-based approaches to genomic analyses of DNA structure". Methods, [Epub ahead of print]. PMID: 18848994. DOI:10.1016/j.ymeth.2008.09.007
  • Ho PS (1994). The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. Proc Natl Acad Sci USA, 91(20):9549-9553.
  • Schroth GP, Chou PJ, Ho PS (1992). Mapping Z-DNA in the human genome. Computer-aided mapping reveals a nonrandom distribution of potential Z-DNA-forming sequences in human genes. J Biol Chem, 267(17):11846-55.

External links

  • ZHunt Online Server — front end by Sandor Maurice; back end by Sandor Maurice and P. Christoph Champ.
  • make-na server — create custom DNA structures (in PDB format)