Molecular Evolution (academic course)

From Christoph's Personal Wiki
Revision as of 16:19, 17 January 2006 by Christoph (Talk | contribs) (Contact: Added time)

Jump to: navigation, search

Overview

Aim/objectives

To provide the student with broad knowledge in the field of molecular evolution (i.e., the evolution of DNA, RNA, and proteins), and with in-depth knowledge of model-based methods for phylogenetic tree reconstruction and hypothesis testing in an evolutionary context. Although the study of molecular evolution does require a certain level of mathematical understanding, this course has been designed to attract a diverse range of students.

Content

Brief introduction to evolutionary theory and population genetics. Mechanisms of molecular evolution. Models of DNA and protein substitution. Reconstruction of phylogenetic trees using distance based methods, parsimony, maximum likelihood, and Bayesian techniques. Advanced models of nucleotide substitution (gamma-distributed mutation rates, molecular clock models, codon models and analysis of selective pressure). Statistical analysis of biological hypotheses (likelihood ratio tests, parametric bootstrapping, Bayesian statistics).

The student will acquire practical experience in the use of computational methods by analyzing sequences from the scientific literature.

Textbook

Contact

  • Professor: Anders Gorm Pedersen, build. 208, room 017, (+45) 4525 2484, gorm@cbs.dtu.dk
  • Department: 27 BioCentrum-DTU
  • Home Page: http://www.cbs.dtu.dk/courses/27615.mol/
  • Semester: Spring 2006 (8 February 2006 — 3 May 2006; Wed; 13:00 - 17:00)

Key words

Molecular evolution, DNA, RNA, proteins