SmoothDock

From Christoph's Personal Wiki
Revision as of 03:07, 31 July 2006 by Christoph (Talk | contribs) (Step 1: rigid-body docking)

Jump to: navigation, search

SmoothDock is an algorithm for finding physical interactions between proteins involved in common cellular functions. It was developed by Carlos J. Camacho and Christoph Champ at the University of Pittsburgh. It is based upon a previous algorithm, ClusPro, developed by Camacho and Steven R. Comeau at Boston University (note: ClusPro is also based on a previous algorithm, Consensus).

The SmoothDock algorithm

The SmoothDock algorithm comprises four steps:

  1. perform rigid-body docking using the program DOT, keeping the top 20,000 structures as ranked by surface complementarity;
  2. re-rank these structures according to a free energy estimate that includes both desolvation and electrostatics and retain the top 2,000 complexes;
  3. cluster the filtered complexes using a pairwise RMS deviation criterion; and
  4. the twenty-five largest clusters are subject to a smooth docking discrimination algorithm where van der Waals forces are taken into account.

Step 1: rigid-body docking

Rigid-body docking using the Fast-Fourier Transform (FFT) based program DOT[1][2] is performed for each receptor/ligand target. The output of this program is the top 20,000 receptor/ligand complexes sampled by the DOT program and ranked according to surface complementarity. Any experimental constraint on the binding area is also imposed here.

Although DOT allows for the use of an electrostatic potential in the scoring function, we base the scoring solely on the surface complementarity between the two structures. DOT is run on a 128 Å x 128 Å x 128 Å grid, using a grid spacing of 1 Å. Using a pre-defined list of 13 000 rotations, over 2.7 x 1010 structures are evaluated, retaining 20 000 structures with the best surface complementarity scores, which are then further subjected to the empirical free energy filtering algorithm described below.

Step 2: filtering decoys

Following the procedure detailed elsewhere[3][4][5], for each complex we comput the effective desolvation and electrostatic binding affinity between receptor and ligand. We then filter the 500 best desolvation energy[6] and 1,500 best electrostatic energy[7] complexes for a total of 2,000 complex candidates.

Step 3: clustering decoys

We cluster the filtered complexes using a pairwise RMS deviation (RMSD) criterion, and retain the twenty-five clusters with the highest number of neighbors[8].

The complexes are clustered in either of two ways:

  1. using an all C_α RMSD criterion and a 10 Å cutoff; and
  2. using a C_α binding site RMSD criterion and a cutoff radius of 7 Å.

All clustering is done in a hierarchical manner such that no overlaps occurred between distinct clusters.

Step 4: refinement and discrimination of native-like clusters

Using 10 representative structures from each cluster, the smooth docking algorithm[9] is used to optimize our free energy function around each cluster. We submit the top ranked complexes from those clusters that converge to the lowest free energies as estimated by Eq.1:

ΔG = E_elec + E_desolv + E_vdw   (Eq.1)

The SmoothDock Server

The above algorithm can be used via a webserver, which I developed in January 2005. It is a fully automated algorithm for protein–protein docking via a webserver.

Note: Since tens of billions of calculations are needed for each receptor/ligand complex, we run the algorithm on a dedicated cluster (256 CPUs).

Notes

  • low affinity complexes: K_d < nM

See also

References

Citations

  1. Ten Eyck LF, Mandell J, Roberts VA, Pique ME (1995). Surveying molecular interactions with DOT. In: Hayes A, Simmons M, editors. Proceedings of the 1995 ACM/IEEE Supercomputing Conference. New York: ACM Press.
  2. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem A, Aflalo C, Vakser I (1992). Molecular surface recognition: determinination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA, 89:2195-2199.
  3. Camacho C, Gatchell D, Kimura R, Vajda S (2000). Scoring docked conformations generated by rigid body protein-protein docking. Proteins, 40:525-537.
  4. Gatchell D, Vajda S, Camacho CJ. Sampling, clustering, refinement and discrimination of protein interactions using SmoothDock. To be Submitted.
  5. Camacho CJ, Weng Z, Vajda S, DeLisi C (1999). Free energy landscapes of encounter complexes in protein-protein association. Biophys J, 76:1166-1178.
  6. Zhang C, Vasmatzis G, Cornette JL (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol, 267:707-726.
  7. Camacho C, Gatchell D, Kimura R, Vajda S (2000). Scoring docked conformations generated by rigid body protein-protein docking. Proteins, 40:525-537.
  8. Gatchell D, Vajda S, Camacho CJ. Sampling, clustering, refinement and discrimination of protein interactions using SmoothDock. To be Submitted.
  9. Camacho CJ, Vajda S (2001). Protein docking along smooth association pathways. Proc Natl Acad Sci USA, 98:10636-10641.

Further reading

External links