Molecular Evolution (academic course)

From Christoph's Personal Wiki
Jump to: navigation, search

Content is archived here for educational purposes only.



To provide the student with broad knowledge in the field of molecular evolution (i.e., the evolution of DNA, RNA, and proteins), and with in-depth knowledge of model-based methods for phylogenetic tree reconstruction and hypothesis testing in an evolutionary context. Although the study of molecular evolution does require a certain level of mathematical understanding, this course has been designed to attract a diverse range of students.


Brief introduction to evolutionary theory and population genetics. Mechanisms of molecular evolution. Models of DNA and protein substitution. Reconstruction of phylogenetic trees using distance based methods, parsimony, maximum likelihood, and Bayesian techniques. Advanced models of nucleotide substitution (gamma-distributed mutation rates, molecular clock models, codon models and analysis of selective pressure). Statistical analysis of biological hypotheses (likelihood ratio tests, parametric bootstrapping, Bayesian statistics).

The student will acquire practical experience in the use of computational methods by analyzing sequences from the scientific literature.


Key words

Molecular evolution, DNA, RNA, proteins

See also

External links